博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Educational Codeforces Round 55 (Rated for Div. 2)
阅读量:6038 次
发布时间:2019-06-20

本文共 9832 字,大约阅读时间需要 32 分钟。

好久没打CF了,今天为了复健随手玩了一套题目

A. Vasya and Book
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Vasya is reading a e-book. The file of the book consists of nn pages, numbered from 11 to nn. The screen is currently displaying the contents of page xx, and Vasya wants to read the page yy. There are two buttons on the book which allow Vasya to scroll dd pages forwards or backwards (but he cannot scroll outside the book). For example, if the book consists of 1010 pages, and d=3d=3, then from the first page Vasya can scroll to the first or to the fourth page by pressing one of the buttons; from the second page — to the first or to the fifth; from the sixth page — to the third or to the ninth; from the eighth — to the fifth or to the tenth.

Help Vasya to calculate the minimum number of times he needs to press a button to move to page yy.

Input

The first line contains one integer tt (1t1031≤t≤103) — the number of testcases.

Each testcase is denoted by a line containing four integers nn, xx, yy, dd (1n,d1091≤n,d≤109, 1x,yn1≤x,y≤n) — the number of pages, the starting page, the desired page, and the number of pages scrolled by pressing one button, respectively.

Output

Print one line for each test.

If Vasya can move from page xx to page yy, print the minimum number of times he needs to press a button to do it. Otherwise print 1−1.

Example
input
Copy
310 4 5 25 1 3 420 4 19 3
output
Copy
4-15
Note

In the first test case the optimal sequence is: 421354→2→1→3→5.

In the second test case it is possible to get to pages 11 and 55.

In the third test case the optimal sequence is: 47101316194→7→10→13→16→19.

可以直接翻到or翻到首页或者末页翻到

#include
using namespace std;int main(){ int T; cin>>T; while(T--) { int n,x,y,d; cin>>n>>x>>y>>d; if(abs(x-y)%d==0) { cout<
B. Vova and Trophies
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Vova has won nn trophies in different competitions. Each trophy is either golden or silver. The trophies are arranged in a row.

The beauty of the arrangement is the length of the longest subsegment consisting of golden trophies. Vova wants to swap two trophies (not necessarily adjacent ones) to make the arrangement as beautiful as possible — that means, to maximize the length of the longest such subsegment.

Help Vova! Tell him the maximum possible beauty of the arrangement if he is allowed to do at most one swap.

Input

The first line contains one integer nn (2n1052≤n≤105) — the number of trophies.

The second line contains nn characters, each of them is either G or S. If the ii-th character is G, then the ii-th trophy is a golden one, otherwise it's a silver trophy.

Output

Print the maximum possible length of a subsegment of golden trophies, if Vova is allowed to do at most one swap.

Examples
input
Copy
10GGGSGGGSGG
output
Copy
7
input
Copy
4GGGG
output
Copy
4
input
Copy
3SSS
output
Copy
0
Note

In the first example Vova has to swap trophies with indices 44 and 1010. Thus he will obtain the sequence "GGGGGGGSGS", the length of the longest subsegment of golden trophies is 77.

In the second example Vova can make no swaps at all. The length of the longest subsegment of golden trophies in the sequence is 44.

In the third example Vova cannot do anything to make the length of the longest subsegment of golden trophies in the sequence greater than 00.

贪心,其实每次搞的都必须是相邻的两段,然后看看有没有多余的G就好

#include
using namespace std;int main(){ int n,f1=0,f2=0,f=0,ma=0; string s; cin>>n; cin>>s; for(int i=0; i
C. Multi-Subject Competition
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

A multi-subject competition is coming! The competition has mm different subjects participants can choose from. That's why Alex (the coach) should form a competition delegation among his students.

He has nn candidates. For the ii-th person he knows subject sisi the candidate specializes in and riri — a skill level in his specialization (this level can be negative!).

The rules of the competition require each delegation to choose some subset of subjects they will participate in. The only restriction is that the number of students from the team participating in each of the chosen subjects should be the same.

Alex decided that each candidate would participate only in the subject he specializes in. Now Alex wonders whom he has to choose to maximize the total sum of skill levels of all delegates, or just skip the competition this year if every valid non-empty delegation has negative sum.

(Of course, Alex doesn't have any spare money so each delegate he chooses must participate in the competition).

Input

The first line contains two integers nn and mm (1n1051≤n≤105, 1m1051≤m≤105) — the number of candidates and the number of subjects.

The next nn lines contains two integers per line: sisi and riri (1sim1≤si≤m, 104ri104−104≤ri≤104) — the subject of specialization and the skill level of the ii-th candidate.

Output

Print the single integer — the maximum total sum of skills of delegates who form a valid delegation (according to rules above) or 00 if every valid non-empty delegation has negative sum.

Examples
input
Copy
6 32 63 62 53 51 93 1
output
Copy
22
input
Copy
5 32 63 62 53 51 11
output
Copy
23
input
Copy
5 21 -11 -52 -12 -11 -10
output
Copy
0
Note

In the first example it's optimal to choose candidates 11, 22, 33, 44, so two of them specialize in the 22-nd subject and other two in the 33-rd. The total sum is 6+6+5+5=226+6+5+5=22.

In the second example it's optimal to choose candidates 11, 22 and 55. One person in each subject and the total sum is 6+6+11=236+6+11=23.

In the third example it's impossible to obtain a non-negative sum.

这就是一个模拟题

#include
#include
using namespace std;#define lson l,(l+r)/2,rt<<1#define rson (l+r)/2+1,r,rt<<1|1#define dbg(x) cout<<#x<<" = "<< (x)<< endl#define pb push_back#define fi first#define se second#define ll long long#define sz(x) (int)(x).size()#define pll pair
#define pii pair
#define pq priority_queueconst int N=1e5+5,MD=1e9+7,INF=0x3f3f3f3f;const ll LL_INF=0x3f3f3f3f3f3f3f3f;const double eps=1e-9,e=exp(1),PI=acos(-1.);int n,m,ans;vector
a[N];int sum[N];int main(){ cin.sync_with_stdio(0),cin.tie(0),cout.tie(0); cin>>n>>m; for(int i=1,s,r; i<=n; i++)cin>>s>>r,a[s].push_back(r); for(int i=1; i<=m; i++) { sort(a[i].begin(),a[i].end(),greater
()); if(a[i].size())sum[1]+=max(0,a[i][0]); for(int j=1; j
D. Maximum Diameter Graph
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Graph constructive problems are back! This time the graph you are asked to build should match the following properties.

The graph is connected if and only if there exists a path between every pair of vertices.

The diameter (aka "longest shortest path") of a connected undirected graph is the maximum number of edges in the shortest path between any pair of its vertices.

The degree of a vertex is the number of edges incident to it.

Given a sequence of nn integers a1,a2,,ana1,a2,…,an construct a connected undirected graph of nn vertices such that:

  • the graph contains no self-loops and no multiple edges;
  • the degree didi of the ii-th vertex doesn't exceed aiai (i.e. diaidi≤ai);
  • the diameter of the graph is maximum possible.

Output the resulting graph or report that no solution exists.

Input

The first line contains a single integer nn (3n5003≤n≤500) — the number of vertices in the graph.

The second line contains nn integers a1,a2,,ana1,a2,…,an (1ain11≤ai≤n−1) — the upper limits to vertex degrees.

Output

Print "NO" if no graph can be constructed under the given conditions.

Otherwise print "YES" and the diameter of the resulting graph in the first line.

The second line should contain a single integer mm — the number of edges in the resulting graph.

The ii-th of the next mm lines should contain two integers vi,uivi,ui (1vi,uin1≤vi,ui≤n, viuivi≠ui) — the description of the ii-th edge. The graph should contain no multiple edges — for each pair (x,y)(x,y) you output, you should output no more pairs (x,y)(x,y) or (y,x)(y,x).

Examples
input
Copy
32 2 2
output
Copy
YES 221 22 3
input
Copy
51 4 1 1 1
output
Copy
YES 241 23 24 25 2
input
Copy
31 1 1
output
Copy
NO
Note

Here are the graphs for the first two example cases. Both have diameter of 22.

d1=1a1=2d1=1≤a1=2

d2=2a2=2d2=2≤a2=2

d3=1a3=2d3=1≤a3=2

d1=1a1=1d1=1≤a1=1

d2=4a2=4d2=4≤a2=4

d3=1a3=1d3=1≤a3=1

d4=1a4=1d4=1≤a4=1

 

 

 

转载于:https://www.cnblogs.com/BobHuang/p/10067563.html

你可能感兴趣的文章
外网用户通过citrix打印慢的解决方法
查看>>
STL容器的使用
查看>>
关于std::map
查看>>
JXL导出Excel文件兼容性问题
查看>>
VBoot1.0发布,Vue & SpringBoot 综合开发入门
查看>>
centos7 安装wps 后 演示无法启动
查看>>
git简单命令
查看>>
LAMP编译部署
查看>>
XenDesktop7.6安装部署入门教程
查看>>
HashMap的工作原理及HashMap和Hashtable的区别
查看>>
GregorianCalendar日历程序
查看>>
Sublime 中运行 Shell 、Python、Lua、Groovy...等各种脚本
查看>>
【Java集合源码剖析】ArrayList源码剖析
查看>>
linux的目录结构
查看>>
这次逻辑通了,
查看>>
HTMLHelper
查看>>
快速构建Windows 8风格应用29-捕获图片与视频
查看>>
java程序:set改造成map
查看>>
C++ 排序函数 sort(),qsort()的使用方法
查看>>
OC语言Block和协议
查看>>